M. FERAHTIA Nassim

MCB

Directory of teachers

Department

Mathematics Department

Research Interests

Harmonic Analysis fractional analysis and wavelets

Contact Info

University of M'Sila, Algeria

On the Web:

  • Google Scholar N/A
  • ResearchGate
    ResearchGate N/A
  • ORCID N/A
  • SC
    Scopus N/A

Recent Publications

2024-11-27

Localization of some functional spaces

From any normalized space of functions over Rn, we can associate on this space its uniform localized version
and we denote by Eul. i.e., we have the following relation
with a designate the translation operator, and ' is a function of D(Rn), positive and not identically null.
Citation

M. FERAHTIA Nassim, (2024-11-27), "Localization of some functional spaces", [national] Second National Conference on Mathematics and Applications , University of M'sila-Algeria

2024-09-17

Uniform Localization of some finite dimensional vector spaces

In this work, we will study the uniform localization of some finite-dimensional vector spaces $L_{p}^{\tau}(\mathbb{R}^{n})$, with
$p\in[1,+\infty]$, $\tau\in\mathbb{R}$ and $\tau\geq 0,$ where we concretely characterize these spaces i.e., we show that the uniform localized Lebesgue-type spaces $L_{p}^{\tau}(\mathbb{R}^{n})_{ul}$ are described without using an auxiliary function $\varphi$.
Citation

M. FERAHTIA Nassim, (2024-09-17), "Uniform Localization of some finite dimensional vector spaces", [international] The 4th International Conference On Applied Algebra ICAA '2024, 17-18th September 2024, Barika, Algeria , University Center of Barika, Algeria

2023-06-19

A composition property on certain uniform localized Lizorkin-Triebel spaces

From any normalized space of functions over $\mathbb{R}^{n}$, we can associate on this space its uniform localized version
and we denote by $E_{lu}$. i.e., we have the following relation
$$\sup_{a\in \mathbb{R}^{n}}\|(\tau_{a}\varphi)f\|_{E}<\infty,$$
with $\tau_{a}$ designate the translation operator, and $\varphi$ is a function of $\mathcal{D}(\mathbb{R}^{n})$, positive and not identically null.
\medskip
\noindent In this work, we will study the composition in the uniform localized Lizorkin-Triebel spaces $F^{s}_{p,q}(\mathbb{R}^{n})_{lu}$, with
$0<s<1$, $p\in[1,+\infty[$ and $q\in[1,+\infty]$. We search to characterize the functions that operate by composition on the left, on space
$F^{s}_{p,q}(\mathbb{R}^{n})_{lu}$. Where we show that the Lipschitz conditions are necessary for $0<s<1$.
Citation

M. FERAHTIA Nassim, (2023-06-19), "A composition property on certain uniform localized Lizorkin-Triebel spaces", [national] The first National Conference On Applied Algebra , University center of Barika, Algeria

2023-03-15

Transformations intégrales dans les espaces Lp

Dans ce polycopie, on va étudier les espaces Lp, Transformation de Fourier des fonctions et la Transformation de Laplace des fonctions . La transformation de Fourier et de Laplace des fonctions jouent un rôle très important dans L'analyse Mathématique sourtout pour résoudre des équations différentielles ordinaires, des équations intégrales et équations aux dérivées partielles.
Citation

M. FERAHTIA Nassim, (2023-03-15), "Transformations intégrales dans les espaces Lp", [national] University of M'sila

2022-07-20

A composition property on certain uniform localized Besov spaces

From any normalized space of functions over $\mathbb{R}^{n}$, we can associate on this space its uniform localized version
and we denote by $E_{lu}$. i.e., we have the following relation
$$\sup_{a\in \mathbb{R}^{n}}\|(\tau_{a}\varphi)f\|_{E}<\infty,$$
with $\tau_{a}$ designate the translation operator, and $\varphi$ is a function of $\mathcal{D}(\mathbb{R}^{n})$, positive and not identically null.
\medskip
\noindent In this work, we will study the composition in the uniform localized Besov space $B^{s}_{p,q}(\mathbb{R}^{n})_{lu}$, with
$0<s<1$ and $p,q\in[1,+\infty]$. We search to characterize the functions that operate by composition on the left, on space
$B^{s}_{p,q}(\mathbb{R}^{n})_{lu}$. Where we show that the Lipschitz conditions are necessary for $0<s<1$.
Citation

M. FERAHTIA Nassim, (2022-07-20), "A composition property on certain uniform localized Besov spaces", [international] The 6th International conference of Mathematical Sciences (ICMS2022) , Maltepe university, istanbul Turkey

2021-04-07

Localisations sur les espaces de Lizorkin-Triebel et composition dans certains espaces de Besov localisés uniformes

In this thesis, we have generalized the Bourdaud theorem of the property of localizations of Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$ on the space $\ell^{r}$, where $s\in\mathbb{R}$,
$p,~q,~r\in\left[1,+\infty\right]$. Also, we have proved that the Lizorkin-Triebel spaces are localizable in the $\ell^{p}$ norm. Furthermore, we were interested in composition operators $T_{f}(g)=f\circ g$
on some Besov spaces with vector valued, where we gave sufficient conditions so that the operator $T_{f}$ operates on $B^{s}_{p,q}(\mathbb{R}^{n},\mathbb{R}^{m})$. Finally, we studied the uniform
localization on Lebesgue type space $L^{\tau}_{p}(\mathbb{R}^{n})$ and the Besov type space $B^{s,\tau}_{p,q}(\mathbb{R}^{n})$, where we have characterized
concretely these spaces , i.e., we have shown that $L^{\tau}_{p}(\mathbb{R}^{n})_{lu}$ and $B^{s,\tau}_{p,q}(\mathbb{R}^{n})_{lu}$ are described without using an auxiliary function $\varphi$,
for $0<s<1$, $p,~q\in\left[1,+\infty\right]$, and $\tau\in\mathbb{R}$.
Citation

M. FERAHTIA Nassim, (2021-04-07), "Localisations sur les espaces de Lizorkin-Triebel et composition dans certains espaces de Besov localisés uniformes", [national] University of msila

2018-05-28

A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES

The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces
$B^{s}_{p,q}(\mathbb{R}^{n})$, with $s\in\mathbb{R}$ and $p,q\in[1,+\infty]$ such that $p\neq q$, are not localizable in the
$\ell^{p}$ norm. Further, he has provided that the Besov spaces $B^{s}_{p,q}$ are embedded into localized Besov
spaces $(B^{s}_{p,q})_{\ell^{p}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{p}},$ for $p\geq q$). Also,
he has provided that the localized Besov spaces $(B^{s}_{p,q})_{\ell^{p}}$ are embedded into the Besov
spaces $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{p}}\hookrightarrow B^{s}_{p,q},$ for $p\leq q$).
In particular, $B_{p,p}^{s}$ is localizable in the $\ell^{p}$ norm, where $\ell^{p}$
is the space of sequences $(a_{k})_{k}$ such that $\|(a_{k})\|_{\ell^{p}}<\infty$.
In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$
on the $\ell^{r}$ space, where $r\in[1,+\infty]$.
More precisely, we show that any Besov space $B^{s}_{p,q}$ is embedded into the localized Besov
space $(B^{s}_{p,q})_{\ell^{r}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{r}},$ for $r\geq\max(p,q)$). Also we show that
any localized Besov space $(B^{s}_{p,q})_{\ell^{r}}$ is embedded into the Besov
space $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{r}}\hookrightarrow B^{s}_{p,q},$ for $r\leq\min(p,q)$).
Finally, we show that the Lizorkin-Triebel spaces $F^{s}_{p,q}(\mathbb{R}^{n})$, where $s\in\mathbb{R}$ and $p,q\in[1,+\infty]$ are localizable in the $\ell^{p}$ norm (i.e., $F^{s}_{p,q}=(F^{s}_{p,q})_{\ell^{p}}$).
Citation

M. FERAHTIA Nassim, Allaoui Salah Eddine, , (2018-05-28), "A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES", [national] Carpathian mathematical publications , Vasyl Stefanyk Precarpathian National University

← Back to Researchers List